Take your FREE HSW Course here - AIA approved!

This is your go-to source for free AIA-approved continuing education for architects. Plus, almost all our courses are delivered in streaming HD video. Registration is fast and easy, just click on Login/Register above. Then, you can enroll in any of our courses found in any of our programs with a single click. Our courses meet or exceed NCARB's high standards for state board license renewal. AIA member? Your credit will be reported to AIA for you.

Create Intelligent Buildings with Networked Lighting to Improve Tenant Overall Well-Being

This session will present how IoT lighting can be a fundamental platform for smart environments.  Well planned building integration allows a flexible, scalable lighting system to collect the data that ultimately brings more value to the building owner.

At the end of this course, participants will learn:

  1. Define IDA, light pollution, and related terms
  2. Identify the impacts of light pollution
  3. Demonstrate the difference between IDA and non-IDA lighting
  4. Assess the process of establishing IDA certification
...Read More

Reducing Fire Risk at the Perimeter of High Rise Structures

High rise fires are not new to us. In fact, we have seen an increase in fire incidents in Asia, Europe, and the Middle East in the last 5-10 years that have amplified awareness on fire safety performance of taller structures. High rise buildings present a greater risk with an increased number of occupants that have a limited means of escape in the event of a fire. That is why the time element for containing a fire is so critical. Also, as we have seen in actual fires, vertical fire spread at the exterior façade can rapidly overwhelm fire fighters means of interceding the fire from ground level. As the fire accelerates and upward spread progresses, it often reaches a height beyond the reach of fire services water streams. That is why containing a fire and preventing it from spreading vertically is so critical for both occupant and first responder safety.

...Read More

What Every Design Pro Should Know About the Replica Green Wall Trend

Program: Landscape Environmental Design

This course will describe the replica Green Wall Trend, that is the use of biomimicry in artificial plants in interior and exterior green wall systems. The trend toward biomimicry is driven by low cost, low maintenance, very high quality plant substitutes, and no water, light, power or HVAC resource requirements. Yet, Replica installations provide the same aesthetic and evoke the same desirable biophilic responses as live plants.

HSW Justification:
Replica Green Walls have all the biophilic benefits of green walls, such as promoting healing, reducing anxiety, and attenuating noise. Replica green wall spaces are especially conducive to gathering and can foster community, encourage group meeting and communication, and promote human interaction. In addition, they have added sustainability benefits by eliminating regular maintenance, the need for water for irrigation, or the need for electrical energy for light, or the need for electrical and/or natural gas for heating or cooling.

Learning Objective 1:
Students will be able to define a Replica Green Wall and describe its benefits and advantages

Learning Objective 2:
Students will be able to identify and describe the quality indicators in a green wall, including the types of systems available, the types of foliage available, and the areas of research and development underway.

Learning Objective 3:
Students will be able to describe appropriate applications for a replica green wall.

Learning Objective 4:
Students will be able to list in detail the various methods of installation.

Note: The Continuing Architect is permitting the brand name of this product to be mentioned because it was the only product of its type and is patent pending.

...Read More

Controlled and Connected Luminaires and Design Integration

Program: The Art and Technology of Lighting

This course will review the components and uses of connected luminaires, their specification and the standards and protocols involved in current lighting controls application. Further, this course will review the emergence of the Internet of things, and how it will impact future lighting controls application.Understand the definition, components and function of a connected luminaire.

Learning Objective 1:
Understand the definition, components and function of a connected luminaire.

Learning Objective 2:
Understand how connected lighting systems interact with the Internet of Things (IoT).

Learning Objective 3:
Understand the basic components of a lighting control system and uses with LED technology.

Learning Objective 4:
Understand the specification of connected luminaire systems.

AIA Course Number FP2018-D

 

...Read More

Leveraging Advances in Parametric Design & Digital Fabrication in Architecture

This course will explore the cutting-edge union of design and technology by delving into parametric design and its symbiosis with digital fabrication, and how the vision is best achieved via vertically-integrated, technology-forward product manufacturers. We will also discuss strategies for effective collaboration with these manufacturers throughout the architectural design process.

Learning Objective 1:
Students will learn about the use of parametric design in architecture, including its definition, history and current state.

Learning Objective 2:
Students will learn about the marriage between parametric design and digital fabrication.

Learning Objective 3:
Students will understand why vertical integration is an important operating model for product manufacturers looking to leverage parametric design.

Learning Objective 4:
Students will understand how to partner with vertical manufacturers throughout the architectural design process and learn the advantages of this digital collaborative approach.

...Read More

Composite Panel Products – Division 6 Materials & LEED® Credits

This course will equip participants to compare features, benefits and limitations of particleboard and medium density fiberboard (MDF) with considerations of product grades and their physical properties for proper end-use selection.

Learning Objective 1:
To help students understand the health benefits of composite products and how testing is an essential means to verify performance.

Learning Objective 2:
To explain to attendees the alternative resin technologies used in the manufacturing process.

Learning Objective 3:
To help students to become familiar with various composite panel products and their environmentally-friendly make-up.

Learning Objective 4:
To familiarize attendees with the variety of ways that composite panels contribute to LEED credits.

...Read More

An Introduction to Custom Balanced Doors

This course will introduce you to the custom balanced door. You will learn about the system components and the differences between a Balanced door and a conventional hinged or pivoted swing door. Then we'll take a closer look at how a balanced door works in an installation. Finally you'll learn about the specific engineering requirements needed to accommodate balanced doors.

HSW Justification:
Balanced doors are safer than conventional doors because they require a smaller interference zone on the sidewalk. Also, they open with ease which benefits smaller people, weak or disabled persons, and the elderly. The majority of this course deals with those benefits and with the mechanical features of the door that make these health and safety benefits possible.

Learning Objective 1:
Understand the differences between the balanced door and a conventional hinged or pivoted swing door

Learning Objective 2:
Know specific requirements for ADA handicap guidelines LO 5: Understand how the balanced door interfaces with power operation LO 6: Understand specific engineering requirements to accommodate balanced doors

Learning Objective 3:
Understand what components make up a typical balanced door system

Learning Objective 4:
Know how the design concept works in an actual installation

...Read More

The History and Impact of Synthetic Turf

This course is designed to teach the history of synthetic turf, its application in water and energy conservation, pollution abatement, sustainable design, and its versatility in numerous landscaping applications and designs. Participants will become knowledgeable about synthetic turf and innovative applications that could be applied to their residential and commercial projects. The most current technological advances in the industry and the positive role synthetic turf plays in the environment.

Learning Objective 1:
Students will gain an increased awareness of the positive environmental impact of synthetic turf on water use, reduced energy demand and reduction of use of fossil fuels, reduced chemical application, and resulting reduction of water and noise pollution.

Learning Objective 2:
Students will become more informed on the newest synthetic turf material technologies available, including the use of soy based materials, as well as how the proper application of infills and proper material selection can benefit the health and safety of athletes.

Learning Objective 3:
Students will be more knowledgeable about the history and evolution of the technology and of landscaping and sports applications using synthetic turf.

Learning Objective 4:
Students will better understand the versatility of synthetic turf and its many uses in sustainable landscape design.

 

...Read More

Selecting and Specifying a Railing System for your Building Project

This course provides an overview of the important factors - such as building codes, safety of use and fall protection, material selection, secure installation methods, and design - that must be considered when selecting or specifying a railing system for a commercial or residential project.

Learning Objective 1:
The student will learn to recognize the unique benefits of different railing materials with respect to durability and sustainability.

Learning Objective 2:
The student will learn to understand relevant building codes and standards related to the structural integrity and safety of a railing project.

Learning Objective 3:
The student will learn to identify common railing materials and finishes, and compare their performance in order to choose materials that best suit the structural requirements, style, and environment of the project.

Learning Objective 4:
The student will learn to distinguish between a variety of railing fabrication, assembly, and installation methods to ensure a safe and attractive railing design.

...Read More

Performance Fabrics in Sustainable Design

This course aims to help educate the designer about what performance fabrics are, the content of various fabrics, how they work, and the benefits to a sustainable design in meeting and maximizing your goals of occupant health, safety, well-being, and sustainability. Windows, views, and openings in buildings present the classic battle between form and function. The designer naturally wants the building’s occupants to enjoy views and light, but the solar heat gain from these openings can wreak havoc on sustainable goals. Sophisticated and high-performing solar control fabrics can help reconcile the form and function of light, views, and sustainability.

HSW Justification:
Substantially all of this course is dedicated to a discussion of the health, safety and welfare aspects of performance fabrics through their appropriate specification, their fabrics' chemical composition, their proper use, their ability to meet safety and performance standards, and their aesthetic contribution.

Learning Objective 1:
The student will learn how to analyze shading fabrics for solar light management including energy reduction, glare and outward visibility, using published shading coefficient data.

Learning Objective 2:
The student will be able to list certification requirements for indoor air quality, anti-bacterial protection, flame retardancy, and environmental regulations.

Learning Objective 3:
The student will be able to identify fabric composition options with an emphasis on sustainable design.

Learning Objective 4:
The student will be able to apply their knowledge of performance fabric features to unique, real-world applications in healthcare, hospitality, government, business, and residential projects.

...Read More
Load More

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×