Architecture, Design and Building Science

This program's collection of continuing education courses provides the architect/student with a catalog of courses on every construction division. Courses include products and their application, safety, the environmental impact of products, and application case studies. Users can search the catalog using CSI division numbers, keywords, manufacturer names, or product descriptions.

New Principles in Residential Design Using Opening Glass Walls

This course aims to familiarize you with the terminology, capabilities, and applications of operable glass walls in both interior and exterior residential settings. You will learn how operable glass walls can enhance the health, safety, and welfare of residents. Additionally, we will share ideas that you can incorporate into your current projects.

 

Learning Objective 1: Students will be able to explain the welfare aspect of design and product selection that enable equitable access to all, can elevate the human experience with daylight and outdoor access, and benefit the environment through sustainable building design.

Learning Objective 2: Students will be able to assess the safety aspects of incorporating product selections that protect buildings and people from harm and damage, particularly considering unexpected violence or vandalism.

Learning Objective 3: Students will be able to identify and recognize the significance of ongoing health concerns related to residential design and product selection.

Learning Objective 4: Students will be able to determine ways to incorporate the design principles as presented in case study examples into single family building projects.

New Principles in Hospitality Design Using Opening Glass Walls

This course explores the impact of the COVID-19 pandemic on design and construction decisions, particularly focusing on operable glass walls in interior and exterior applications, primarily in the hospitality industry. Students will gain familiarity with terminology, capabilities, and uses of operable glass walls, with an emphasis on addressing health concerns post-pandemic through responsive design. The course highlights how operable glass walls contribute to improving the health, safety, and well-being of building occupants while also providing psychological benefits by creating comfortable environments. Practical design concepts applicable to various commercial projects will be covered, with direct access to manufacturer resources for further assistance.

 

Learning Objective 1: You will be able to identify and recognize the significance of the health concerns related to the COVID-19 pandemic as they relate to building design and product selection.

Learning Objective 2: You will learn how to assess the safety aspects of incorporating design and product selections that protect buildings, occupants, and owners from harm and damage, particularly in light of unexpected violence and vandalism.

Learning Objective 3: You will be able to explain the welfare aspects of design and product selection that enable equitable access to all, can elevate the human experience with daylight and outdoor access, and benefit the environment through sustainable building design.

Learning Objective 4: You will be able to determine ways to incorporate the design principles as presented into different building types and applications.

Leveraging Advances in Parametric Design & Digital Fabrication in Architecture

This course will explore the cutting-edge union of design and technology by delving into parametric design and its symbiosis with digital fabrication, and how the vision is best achieved via vertically-integrated, technology-forward product manufacturers. We will also discuss strategies for effective collaboration with these manufacturers throughout the architectural design process.

Learning Objective 1: Students will learn about the use of parametric design in architecture, including its definition, history and current state.

Learning Objective 2: Students will learn about the marriage between parametric design and digital fabrication.

Learning Objective 3: Students will understand why vertical integration is an important operating model for product manufacturers looking to leverage parametric design.

Learning Objective 4: Students will understand how to partner with vertical manufacturers throughout the architectural design process and learn the advantages of this digital collaborative approach.

Meet the Expert

Exploring Design Trends for K-12 Applications

Addressing student behaviors, improving the learning environment, and enhancing the sustainability of educational buildings with design.

Learning Objective 1: After reading this article, you should be able to: describe how the inclusive restroom design concept addresses the bad behaviors plaguing bathroom spaces and improves student safety

Learning Objective 2: After reading this article, you should be able to: summarize the ways that acoustical surfaces, lighting, and HVAC systems are being used to improve the comfort of the learning environment, helping students perform better in class.

Learning Objective 3: After reading this article, you should be able to: identify various solutions that can be incorporated to heighten security throughout a school.

Learning Objective 4: After reading this article, you should be able to: explain some of the sustainability strategies making schools more environmentally friendly.

Performance Fabrics in Sustainable Design

This course aims to help educate the designer about what performance fabrics are, the content of various fabrics, how they work, and the benefits to a sustainable design in meeting and maximizing your goals of occupant health, safety, well-being, and sustainability. Windows, views, and openings in buildings present the classic battle between form and function. The designer naturally wants the building’s occupants to enjoy views and light, but the solar heat gain from these openings can wreak havoc on sustainable goals. Sophisticated and high-performing solar control fabrics can help reconcile the form and function of light, views, and sustainability.

HSW Justification: Substantially all of this course is dedicated to a discussion of the health, safety and welfare aspects of performance fabrics through their appropriate specification, their fabrics' chemical composition, their proper use, their ability to meet safety and performance standards, and their aesthetic contribution.

Learning Objective 1: The student will learn how to analyze shading fabrics for solar light management including energy reduction, glare and outward visibility, using published shading coefficient data.

Learning Objective 2: The student will be able to list certification requirements for indoor air quality, anti-bacterial protection, flame retardancy, and environmental regulations.

Learning Objective 3: The student will be able to identify fabric composition options with an emphasis on sustainable design.

Learning Objective 4: The student will be able to apply their knowledge of performance fabric features to unique, real-world applications in healthcare, hospitality, government, business, and residential projects.

Meet the Expert

Surface Engineered Metals for Resilient Design

Program: Architecture, Design, and Building Science

The purpose of this presentation is to give you a clear understanding of the features and benefits of textured metals and discover how to best specify stainless steel and metal alloys in your projects. The first part of our talk will introduce the ecological and economic properties of textured stainless steel as well as educate you on the composition of metals and alloys. The second portion of this presentation will illustrate the process of texturing metals and their applications, as well as how to specify them. The session will also review projects that use textured metals - with beautiful results.

HSW Justification:
Most of this course is dedicated to explaining the aesthetic, ecological and economic advantages of textured metals. Most often, the metal used in stainless steel, which is very long-lived, valuable and 100 percent recyclable. The case studies focus on many beautiful installations that enhance the lives of occupants and visitors through the art and craftsmanship of the installations.

Learning Objective 1:
Students will understand ecological, economic, health and safety benefits of utilizing metals that can be deep textured.

Learning Objective 2:
Students will explore current applications that employ deep textured metals because of their ecological benefits, enhanced performance, and aesthetic attributes.

Learning Objective 3:
Students will learn compositions of metals that can be deep textured, how each performs under varying environmental constraints, and how to safely and economically specify deep textured metals.

Learning Objective 4:
Students will discover end user benefits of deep texturing metals, including performance enhancement, material usage reduction and longer product lifecycles.

Meet the Expert

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×